Monday, September 30, 2013
IR On Off Switch Using Microcontroller
How it works:
Choose one key on your remote controller (from tv, video or similar), memorized it following a simple procedure and with that key you will able to turn ON or OFF any electrical device you wish. So, with every short press of that key, you change the state of relay in receiver (Ir-switch). Memorizing remote controller key is simple and you can do it following this procedure: press key on Ir-switch and led-diode will turn ON. Now you can release key on Ir-switch, and press key on your remote controller. If you do that, led-diode will blink, and your memorizing process is finished.
Instructions:
To make this device will be no problem even for beginners in electronic, because it is a simple device and uses only a few components. On schematic you can see that you need microcontroller PIC12F629, ir-receiver TSOP1738 (it can be any type of receiver TSOP or SFH) and for relay you can use any type of relay with 12V coil.
click on the images to enlarge |
Click here to download source code for PIC12F629-675 . To extract the archive use this password extremecircuits.net
Car Reversing Horn With Flasher
Here is a simple circuit that starts playing the car horn whenever your car is in reverse gear. The circuit (1) employs dual timer NE556 to generate the sound. One of the timers is wired as an astable multivibrator to generate the tone and the other is wired as a monostable multivibrator. Working of the circuit is simple. When the car is in reverse gear, reverse-gear switch S1 of the car gets shorted and the monostable timer triggers to give a high output. As a result, the junction of diodes D1 and D2 goes high for a few seconds depending on the time period developed through resistor R4 and capacitor C4.At this point, the astable multivibrator is enabled to start oscillating. The output of the astable multivibrator is fed to the speaker through capacitor C6.
Car reversing horn diagram:
Car Reversing Horn Circuit Diagram
The speaker, in turn, produces sound until the output of the monostable is high. When the junction of diodes D1 and D2 is low, the astable multivibrator is disabled to stop oscillating. The output of the astable multivibrator is fed to the speaker through capacitor C6. The speaker, in turn, does not produce sound. Assemble the circuit on a general-purpose PCB and enclose in a suitable cabinet.Connect the circuit to the car reverse switch through two wires such that S1 shorts when the car gear is reversed and is open otherwise. To power the circuit, use the car battery.
Flasher diagram:
The flasher circuit (shown in Fig. 2) is built around timer NE555, which is wired as an astable multi-vibrator that outputs square wave at its pin 3. A 10W auto bulb is used for flasher. The flashing rate of the bulb is decided by preset VR1.
Assemble the circuit on a general-purpose PCB and enclose in a suitable cabinet. The flasher bulb can be mounted at the car’s rear side in a reflector or a narrow painted suitable enclosure. EFY note. A higher-wattage bulb may reduce the intensity of the head-light. You can enclose both the car-reversing horn and flasher circuits together or separately in a cabinet in your car.
Author: Ashok K. Doctor - Copyright: Electronics For You Magazine
Sunday, September 29, 2013
Simple Universal PIC Programmer
This simple programmer will accept any device thats supported by software (eg, IC-Prog 1.05 by Bonny Gijzen at www.ic-prog.com). The circuit is based in part on the ISP header described in the SILICON CHIP "PIC Testbed" project but also features an external programming voltage supply for laptops and for other situations where the voltage present on the RS232 port is insufficient. This is done using 3-terminal regulators REG1 & REG2. The PIC to be programmed can be mounted on a protoboard. This makes complex socket wiring to support multiple devices unnecessary. 16F84A, 12C509, 16C765 and other devices have all been used successfully with this device.
Circuit diagram:
Simple Universal PIC Programmer Circuit Diagram
Author: Luke Weston - Copyright: Silicon Chip
Saturday, September 28, 2013
USB Fuse
Life in the 21st century would be almost unbearable without some of the computer peripherals that PC users now look on as essentials - take for example the USB powered teacup warmer; this device is obviously an invaluable productivity tool for all users but it could prove a little tire some if the extra current it draws from the USB port is sufficient to produce a localised meltdown on the motherboard. In a slightly more serious vein a similar situation could result from a carelessly wired connector in the design lab during prototyping and development of a USB ported peripheral. What’s needed here is some form of current limiting or fuse to prevent damage to the motherboard.
The MAX1562 shown in Figure 1 is a purpose-built USB current limiter from the chip manufacturers Maxim. The device operates with a supply voltage from 4.0 to 5.5 V with an operating current of typically 40 µA or 3 µA in standby mode. The circuit introduces a very low resistance in the power line (typically 26 m but guaranteed less than 50 m) from an internal MOSFET. The FET gate bias voltage is generated on-chip from a charge pump circuit.
The chip can distinguish between an overload and a short circuit condition in the supply line by measuring the voltage drop across its internal resistance; if the voltage is less than 1 V a short circuit is assumed and the chip pulses a (limited) output current every 20 ms in an effort to raise the output voltage. This approach will eventually be successful if the short circuit was caused by a large value capacitor across the USB supply pins or an external hard drive which have a high in-rush at start up. If the supply rail is not pulled up within the first 20 ms the FAULT output (pin 2) is driven low. The output current limit is set by a single resistor on pin 4 (ISET): LIM = 17120 / RSET.
The circuit diagram shows a fixed 5.6k resistor in series with a 10k preset giving an adjustable current limit between 1.097 and 3.057 A. This range should be sufficient for the majority of applications. Increasing the preset resistance reduces the current limit level. Any intermittent connection in the preset (caused by a dirty track etc.) will switch the chip into shut down. The MAX1562 also contains a thermal cut out which turns off the output when the chip temperature exceeds 160 degrees C.
Figure 2 shows a diagram of the manufacturer’s application circuit. The FAULT output drives an LED via a series limiting resistor which reduces the LED current to 2 to 3 mA. The MAX1562 is available in a HESA variant (with an active high ON signal) or ESA version (with an active low ON signal). The chip is packaged in an 8-pin SMD outline. Figure 3 shows a small PCB layout for the circuit using mostly SMD components.
COMPONENTS LIST
Resistors
R1 = 5k6 (SMD 1206)
R2 = 1k5 (SMD 1206)
P1 = 10k preset
Capacitors
C1 = 1µF (SMD 1206)
C2 = 4µF7 10 V, tantalum
C3 = 220nF (SMD 1206)
Semiconductors
D1 = LED, low current
IC1 = MAX1562ESA
Author: Andreas Köhler - Copyright: Elektor Electronics
Friday, September 27, 2013
Picnic Lamp
Resistor R4 keeps trigger input pin 2 of the monostable normally high in the absence of the trigger input. Timing elements R6 and C4 give a time delay of three minutes. Reset pin 4 of IC2 is connected to the positive rail through R5 and to the negative rail through C2 to provide power-on-reset function. The output of IC2 powers the white LED (LED1) through ballast resistor R7. The circuit can be easily assembled on a perforated board. Make the circuit assembly as compact as possible to enclose in a small case. Use three 1.5V pen-light cells to power the circuit. Adjust VR1 and VR2 suitably to get sufficient sensitivity of IC1. Toggle switch S1 can be used to switch on the lamp like a torch.
Thursday, September 26, 2013
IR–S PDIF Receiver
The combination of L1 and R3 forms a high-pass filter that allows signals above 1 MHz to pass. L1 is a standard noise-suppression choke. From this filter, the signal is fed to two inverters configured as amplifiers. The third and final inverter (IC1c) generates a logic-level signal. This 74HCU04 provides so much gain that there is a large risk of oscillation, particularly when the final stage is loaded with a 75-Ω coaxial cable. In case of problems (which will depend heavily on the construction), it may be beneficial to add a separate, decoupled buffer stage for the output, which will also allow the proper output impedance (75 Ω) to be maintained in order to prevent any reflections.
When building the circuit, make sure that the currents from IC1 do not flow through the ground path for T1. If necessary, use two separate ground planes and local decoupling. Furthermore, the circuit must be regarded as a high-frequency design, so it’s a good idea to provide the best possible screening between the input and the output. With the component values shown in the schematic, the range is around 1.2 metres without anything extra, which is not especially large. However, the range can easily be extended by using a small positive lens (as is commonly done with standard IRDA modules). In our experiments, we used an inexpensive magnifying glass, and once we got the photodiode positioned at the focus after a bit of adjustment.
We were able to achieve a range of 9metres using the same transmitter (with a sampling frequency of 44.1 kHz). This does require the transmitter and receiver to be physically well aligned to each other. As you can see, a bit of experimenting certainly pays off here! It may also be possible to try other types of photo-diode. The HDSL-5420 indicated in the schematic has a dome lens, but there is a similar model with a flat-top case (HDSL-5400). It has an acceptance angle of 110°, and with the same level of illumination, it generates nearly four times as much current.
The current consumption of the circuit is 43 mA with no signal and approximately 26 mA with a signal (fs = 44.1 kHz) That is rather high for battery operation, but it can handled quite readily using a pair of rechargeable NiMH cells. Incidentally, the circuit will also work at 4.5 V and even 3 V. If a logic-level output is needed, C3 at the output can be replaced by a jumper. Finally, there is one other thing worth mentioning. With the HSDL-5400 that we had to play with, the cathode marking (a dark-blue line on the side below one lead) was on the wrong side (!). So if you want to be sure that the diode is fitted properly, it’s a good idea to measure the DC voltage across R1, which should be practically zero.
Wednesday, September 25, 2013
Switchmode Constant Current Source
Basically, this circuit is a conventional switchmode regulator adapted for constant current output and is specially designed for stepper motor drivers - although it could be used for other applications as well. The circuit works as follows: IC1 (LM2575T) and its associated components (D1, L1, C1, etc) operate as a switchmode power supply. Normally, for constant voltage operation, the output is connected - either directly or via a resistive divider - back to the feedback input (pin 4) of IC1.
In this circuit, however, Q1 senses the current flowing through R1 and produces a corresponding voltage across R3. This voltage is then fed to pin 4 of IC1. As a result, the the circuit regulates the current into a load rather than the voltage across the load. Only one adjustment is needed: you have to adjust VR1 for optimum stepper motor performance over the desired speed range. The simplest way to do this is to measure the motor current at its rated voltage at zero stepping speed and then adjust VR1 for this current. The prototype worked well with a stepper motor rated at 80O per winding and a 12V nominal input voltage. Some components might have to be modified for motors having different characteristics.
Tuesday, September 24, 2013
Mains Failure Alarm
When the mains power disappears, Re1 is de-energized and the 0.22 F Gold-cap used in position C4 provides supply current to IC2. When the mains voltage is present, C4 is charged up to about 5.5 volts with IC1 acting as a 100-mA current limit and D10 preventing current flowing back into the regulator output when the mains voltage is gone. According to the Goldcap manufacturer, current limiting is not necessary during charging but it is included here for the security’s sake. The CMOS 555 is configured in astable multivibrator mode here to save power, and so enable the audible alarm to sound as long as possible. Resistors R5 and R6 define a short ‘on’ time of just 10 ms. That is, however, sufficient to get a loud warning from the active buzzer. In case the pulses are too short, increase the value of R5 (at the expense of a higher average current drawn from the Goldcap).
Monday, September 23, 2013
Automatic Heat Detector Circuit
This circuit uses a complementary pair comprising NPN metallic transistor T1 (BC109) and pnp germanium transistor T2 (AC188) to detect heat (due to outbreak of fire, etc) in the vicinity and energise a siren. The collector of transistor T1 is connected to the base of transistor T2, while the collector of transistor T2 is connected to relay RL1.
The second part of the circuit comprises popular IC UM3561 (a siren and machine-gun sound generator IC), which can produce the sound of a fire-brigade siren. Pin numbers 5 and 6 of the IC are connected to the +3V supply when the relay is in energised state, whereas pin 2 is grounded. A resistor (R2) connected across pins 7 and 8 is used to fix the frequency of the inbuilt oscillator.
Circuit Diagram
Automatic Heat Detector Circuit Diagram
The output is available from pin 3. Two transistors BC147 (T3) and BEL187 (T4) are connected in Darlington configuration to amplify the sound from UM3561. Resistor R4 in series with a 3V zener is used to provide the 3V supply to UM3561 when the relay is in energised state. LED1, connected in series with 68-ohm resistor R1 across resistor R4, glows when the siren is on. To test the working of the circuit, bring a burning matchstick close to transistor T1 (BC109), which causes the resistance of its emitter-collector junction to go low due to a rise in temperature and it starts conducting. Simultaneously, transistor T2 also conducts because its base is connected to the collector of transistor T1. As a result, relay RL1 energizes and switches on the siren circuit to produce loud sound of a fire-brigade siren.
Note.
- We have added a table to enable readers to obtain all possible sound effects by returning pins 1 and 2 as suggested in the table.
Author:Sukant Kumar Behara Copyright:Circuit Ideas
zBot 10 A Power Stage for DC Motor
Sunday, September 22, 2013
Telephone In Use Indicator
If all extension phones are on-hook and the line voltage is around 48 V, Q1 will conduct thus effectively shorting the gate of Q2 to its source, so it will be off and the LED will be disabled. Lifting the handset of any phone on the line causes the line voltage to drop to 5-15 V. The gate voltage of Q1, equal to some 6% of the line voltage, will then be too low and Q1 will be turned off. So Q2s gate is now biased at approximately 1/2 of the line voltage, Q2 turns on and the LED indicates that the line is in use. The circuit itself is practically invisible to the other telephone devices using the same line. LED1 must be low-current and its current-limiting resistor must be 2k2 or more.
The other components ideal values may vary slightly, depending on the local telephone line parameters. The circuit is powered off the telephone line. If other types of MOSFETs are used, the 500k trimmer can be adjusted to ensure that Q1 is biased fully on while the line is not in use (LED1 off), and vice versa. If Q2 is not a BS108 but some other 200 V MOSFET with a higher G-S threshold voltage, it might be necessary to increase the value of the lower (or decrease the value of the upper) one of the two resistors connected to the gate of Q2. Plain (bipolar junction) transistors can be used instead and the circuit also works fine.
But the resistor values are then much lower - letting ten times more microamps of current pass through while the line is not in use, and even this MOSFET design still could not meet formal minimum on-hook DC resistance specifications. Both prototypes PCBs were 4x1 cm. The current-limiting resistor for LED1 is 2k2 in both cases. DO NOT ground any of the leads or conducting surfaces in this circuit. A more reliable design would also include some kind of over-voltage protection etc.
Warning:
In their normal course of operation, telephone lines can deliver life-threatening voltages! Do not attempt to build any of the circuits/projects unless you have the expertise, skill and concentration that will help you avoid an injury. There are also legal aspects and consequences of connecting things to telephone lines, which vary from country to country. Keep away from telephone lines during a lightning storm!
Saturday, September 21, 2013
1999 Chevrolet Chevy Tahoe Wiring Diagram
1999 Chevrolet Chevy Tahoe Wiring Diagram |
connector, diesel, fuse block, steering ctrl, vehicle, engine ctrl, powertrain ctrl module, steering wheel position signal, case ctrl, passlock sensor, scurity lamp, instrument cluster, passlock module, black wire, cylinder, hall effect, magnet
Friday, September 20, 2013
1978 Ford F 150 Lariat Wiring Diagram
1978 Ford F-150 Lariat Wiring Diagram |
switch, high beam, indicator, horn relay, yellow wire, green wire, fusible link, starter relay, ignition coil, park light, distributor, ignition module, noise filter, cluth safety switch, alternator indicator, backup light, widshield wiper switch, washer motor, regulator
Thursday, September 12, 2013
1 5V to 5V 12V DC DC Converter with LT1073
Wednesday, September 11, 2013
Build a Telephone Record Control Circuit Diagram
Circuit operation is as follows. When the phone is on hook the voltage across the phone line is about 48volts dc. When the phone is off hook the voltage will drop to below 10volts dc. When the line voltage is at 48volts the FET is off which causes Q2 and Q3 to be off. When the phone is picked up the FET turns on along with Q2 and Q3 which turns your recorder on. The tape recorder must be in the record mode at all times. As you can see the power source for the circuit is the phone line.
Tuesday, September 10, 2013
Simple EMF Probe
Thursday, September 5, 2013
LED 12 Volt Lead Acid Battery Meter Circuit
Wednesday, September 4, 2013
Octopus Curve Tracer
The octopus is used in conjuction with an oscilloscope set to display in X-Y mode. It displays voltage across the test probes on one axis and current through the probes on the other axis. A scope with both Horizontal and Vertical inputs (X-Y mode) is required.
This is my version of a circuit that has been around since at least the 1960s, I added the ability to select voltage taps on the filament transformer and adjust the amount of current through the probes.
Octopus Curve Tracer Circuit Diagram
Theory:
Power is applied to the step-down transformer through a 1 amp fuse and a power switch. The transformer has output taps at 4V, 8V, 12V and 16V. If you cant find an equivalent transformer, a more common 6V/12V transformer will work. The voltage select switch allows one of four voltages to be selected. The current limit variable resistor selects the maximum current through the test probes.
When the probes are open, the scope will display a vertical line, when the scope probes are shorted, the scope will display a horizontal line. The octopus places a constantly changing sine wave voltage across the probed device. The horizontal axis shows the current through the probes and the vertical axis shows the voltage across the probes. As the sine wave changes, the scope trace loops around in accordance with the associated current and voltage readings from the probe. Probing different electronic components will produce a variety of unique scope patterns.
Construction:
The octopus was built into a deep 4"x4" electrical utility box, as shown in the photo. A tall lid was used for the top to make enough room for the transformer. The box knock-outs on the front were removed and the switches and potentiometer were mounted on an aluminum plate that was screwed into the side of the utility box.
The test jack holes were drilled directly into the box and the power and oscilloscope cables were secured to the box with common Romex cable clamps. The oscilloscope cables were made with flexible RG-58 coax pieces and terminated with BNC connectors for direct connection to the scope.
Use:
Connect the Horizontal and Vertical connectors to the oscilloscope inputs, power up the octopus and adjust the scopes vertical and horizontal amplifiers for full screen-width lines when the probes are open and shorted.
Place various components across the scope and adjust the voltage taps and current limiter for the best display. The 12V setting is a good default value.
Here are some typical curves that the octopus will display:
- Open Circuit - vertical line
- Short Circuit - horizontal line
- Resistor - diagonal line, slope varies with the value
- Capacitors and Inductors - ellipses, shape varies with value
- Diodes - L shaped curve
- Zener Diodes - squared Z shaped curve
- Transistor EC - tall L shaped curve
- Transistor EB - squared Z shaped curve
- Transistor BC - L shaped curve (same as diode)
- Varistor - S shaped curve
By placing the probes on a transistors emitter and collector leads, then touching the base lead with your finger, you can observe the devices gain by seeing how much the curve changes.
In-circuit testing with the octopus is a bit of an acquired skill, a wide variety of curves can be found and faulty components can be identified. If suspicious components are found, they can be removed from the circuit and tested further.
Tuesday, September 3, 2013
12V Touch Switch Exciter
12V Touch Switch Exciter Circuit diagram:
Monday, September 2, 2013
Simple AM Transmitter Circuit
Description